TI 83/84 Calculator – The Basics of Statistical Functions

What you want to do >>>	Put Data in Lists	Get Descriptive Statistics	Create a histogram, boxplot, scatterplot, etc.	Find normal or binomial probabilities	Confidence Intervals or Hypothesis Tests
How to start What to do	STAT > EDIT > 1: EDIT ENTER Clear numbers already	[after putting data in a list] STAT > CALC > 1: 1-Var Stats ENTER The screen shows:	[after putting data in a list] 2 nd STAT PLOT 1:Plot 1 ENTER 1. Select "On," ENTER	2 nd VARS For normal probability,	STAT > TESTS Hypothesis Test:
next	in a list: Arrow up to L1, then hit CLEAR, ENTER. Then just type the numbers into the appropriate list (L1, L2, etc.)	1-Var Stats You type: 2nd L1 or 2nd L2, etc. ENTER The calculator will tell you \bar{x} , s, 5-number summary (min, Q1, med, Q3, max), etc.	 Select the type of chart you want, ENTER Make sure the correct lists are selected ZOOM 9 The calculator will display your chart 	scroll to either 2: normalcdf(, then enter low value, high value, mean, standard deviation; or 3:invNorm(, then enter area to left, mean, standard deviation. For binomial probability, scroll to either 0:binompdf(, or A:binomcdf(, then enter n,p,x.	Scroll to one of the following: 1:Z-Test 2:T-Test 3:2-SampZTest 4:2-SampTTest 5:1-PropZTest 6:2-PropZTest C:X ² -Test D:2-SampFTest E:LinRegTTest F:ANOVA(Confidence Interval: Scroll to one of the following: 7:ZInterval 8:TInterval 9:2-SampZInt 0:2-SampTInt A:1-PropZInt B:2-PropZIn

Other points: (1) To **clear the screen**, hit 2nd, MODE, CLEAR

(2) To enter a negative number, use the negative sign at the bottom right, not the negative sign above the plus sign.
(3) To convert a decimal to a fraction: (a) type the decimal; (b) MATH > Frac ENTER

Frank's Ten Commandments of Statistics

- 1. The probability of choosing one thing with a particular characteristic equals the percentage of things with that characteristic.
- 2. Samples have STATISTICS. Populations have PARAMETERS.
- 3. "Unusual" means *more than 2 standard deviations* away from the mean; "usual" means *within* 2 standard deviations of the mean.
- 4. "Or" means Addition Rule; "and" means Multiplication Rule
- 5. If Frank says Binomial, I say npx.
- 6. If σ (sigma/the standard deviation *of the population*) is **known**, use Z; if σ is **unknown**, use T.
- 7. In a Hypothesis Test, the claim is ALWAYS about the **population**.
- In the Traditional Method, you are comparing POINTS (the Test Statistic and the Critical Value); in the P-Value Method, you are comparing AREAS (the P-Value and α (alpha)).
- 9. If the P-Value is less than α (alpha), reject H₀ ("If P is low, H₀ must go").
- 10. The Critical Value (point) sets the boundary for α (area). The Test Statistic (point) sets the boundary for the P-Value (area).

Chap	Chapter 3 – Statistics for Describing, Exploring and Comparing Data									
	-	andard Deviation	Finding th	inding the Mean and Standard Deviation from a Frequency Distribution Percentiles and Values						
<i>s</i> =	$\sqrt{\frac{\sum (x-\bar{x})^2}{n-1}}$	- Example:	Speed	Midpoint (x)	Frequency (f)	<i>x</i> ²	$f \cdot x$	$f \cdot x^2$		The <u>percentile</u> of value x =
<u>x</u>	$x - \overline{x}$	$(x-\overline{x})^2$	42-45	43.5	25	1892.25	1087.5	47306.25		number of values <x 100<="" td=""></x>
1	-5	25	46-49	47.5	14	2256.25	665	31587.50		$\frac{number \ of \ values < x}{total \ number \ of \ values} \cdot 100$
3	-3	9	50-53	51.5	7	2652.25	360.5	18565.75		(round to nearest whole number)
1 <u>4</u>	8	64	54-57	55.5	3	3080.25	166.5	9240.75		To find the value of percentile k :
Tota	I	98	58-61	59.5	1	3540.25	59.5	3540.25		To find the value of percentile k.
$\bar{x} = 6$	(18/3)				50		2339	110240.50		$L = \frac{k}{100} \cdot n$; this gives the <u>location</u> of
s = ,	$\overline{x} = \sqrt{\frac{98}{3-1}} = \sqrt{49} = 7$ $\overline{x} = \frac{\sum (f \cdot x)}{\sum f}, \text{ so } \overline{x} = \frac{2339}{50} \approx 46.8$ $s = \sqrt{\frac{n[\sum (f \cdot x^2)] - [\sum (f \cdot x)]^2}{n(n-1)}}, \text{ so } s = \sqrt{\frac{50[110240.5] - 2339^2}{50(49)}} = \sqrt{\frac{41104}{2450}} \approx \sqrt{16.78} \approx 4.1$ $\overline{x} = \frac{\sum (f \cdot x)}{\sum f}, \text{ so } \overline{x} = \frac{2339}{50} \approx 46.8$ $\overline{x} = \sqrt{\frac{n[\sum (f \cdot x^2)] - [\sum (f \cdot x)]^2}{n(n-1)}}, \text{ so } s = \sqrt{\frac{50[110240.5] - 2339^2}{50(49)}} = \sqrt{\frac{41104}{2450}} \approx \sqrt{16.78} \approx 4.1$ $\overline{x} = \sqrt{\frac{n}{100}}, \text{ this gives the location of that number, then the answer is the mean of that number above it.}$									
***U	*** Using the Calculator: To find mean & standard deviation of a frequency distribution or a probability distribution: First: STAT > EDIT ENTER, then in L1 put in									
all th	all the x values (<i>midpoints</i> if it's a frequency distribution); in L2 put in frequencies or probabilities as applicable. Second: STAT > CALC ENTER 1-Var Stats 2 ND L1,									
$2^{ND} L$	2 ENTER.	The screen shows	the mean	$(ar{x})$ and the stand	dard deviation, e	ither Sx (if	it's a <i>freq</i>	<i>uency</i> distribu	ution) o	σx (if it's a <i>probability</i> distribution).

Chapter 4 - Probability						
Addition Rule ("OR")	Find the probab	Find the probability of "at least 1" girl out of 3 kids, with boys			Fundamental Counting Rule: For a sequence of two	
P(A or B) = P(A) + P(B) - P(A and B)	and girls equally	nd girls equally likely.			events in which the first event can occur <i>m</i> ways and the	he
Multiplication Rule ("AND") P(A and B) = P(A) · P(B A) Conditional Probability	*"All boys" mean AND #2 is a boy A boy, so we use th	AND #3 is a	0 girls) = P(all boys) = .125 *	P(at least 1 girl) = P(1, 2 or 3 girls) = 1 minus .125 = . 875	second event can occur n ways, the events together ca occur a total of $m \cdot n$ ways. Factorial Rule : A collection of n different items can be	
$P(B A) = \frac{P(A \text{ and } B)}{P(A)}$	Multiplication Ru .5 x .5 x .5 = .125	lle:		omplements, so their probability must = 1.	arranged in order <i>n</i> ! different ways. (Calculator Exa To get 4!, hit 4MATH>PRB>4ENTER	
Permutations Rule (Items all Differe	ent)	Permutations Rule (Some Items Identical)		tems Identical)	Combinations Rule	
1. <i>n</i> different items available.		1. <i>n</i> different items available, and some are		ble, and some are	1. <i>n</i> different items available.	
2. Select <i>r</i> items without replacem	ent	identical			2. Select <i>r</i> items without replacement	
 Rearrangements of the same items are considered to be <u>different</u> sequences (ABC is counted separately from CBA) 		 Select all <i>n</i> items without replacement Rearrangements of distinct items are considered to be different sequences. 		inct items are ent sequences.	 Rearrangements of the same items are considered to be <u>the same</u> sequence (ABC is counted the same as CBA) 	
Calculator example: $n = 10$, $r = 8$, so $_{10}P_8$ Hit 10 MATH > PRB > 2, then 8 ENTER = 1814400		# of permutations = $\frac{n!}{n_1! n_2! \cdots n_k!}$		$\cdots n_k!$	Calculator example: n = 10, r = 8, so $_{10}C_8$ Hit 10 MATH > PRB > 3, then 8 ENTER = 45	

Chapters 3-4-5 – Summary Notes

	All Sample Values	Frequency Distribution	Probability Distribution
Mean	$\overline{x} = \frac{\sum x}{n}$	$\overline{x} = \frac{\overline{\Sigma}(f \cdot x)}{\Sigma f}$	$\mu = \sum (x \cdot P(x))$
Std Dev	$s = \sqrt{\frac{\sum (x - \overline{x})^2}{n - 1}}$	$s = \sqrt{\frac{n[\Sigma(f \cdot x^2)] - [\Sigma(f \cdot x)]^2}{n(n-1)}}$	$\boldsymbol{\sigma} = \sqrt{\sum [x^2 \cdot \boldsymbol{P}(x)] - \mu^2}$

Chapter 5 - Discrete Probability Distributions

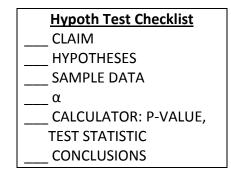
Sec. 5.2

A random variable is simply a number that can change, based on chance. It can either be **discrete** (*countable*, like how many eggs a hen might lay), or **continuous** (like how much a person weighs, which is *not* something you can *count*). Example: The number of Mexican-Americans in a jury of 12 members is a random variable; it can be anywhere between 0 and 12. And it is a discrete random variable, because it is a number you can count.

To find the mean and standard deviation of a probability distribution **by hand**, you need 5 columns of numbers: (1) x; (2) P(x); (3) $x \cdot P(x)$; (4) x^2 ; (5) $x^2 \cdot P(x)$. **Using the Calculator:** To find the mean and standard deviation of a probability distribution, **First**: STAT > EDIT, then in L1 put in all the x values, and in L2 put in the probability for each x value. **Second**: STAT > CALC > 1-Var Stats > 1-Var Stats L1, L2 ENTER.

Sec. 5.3 – 5.4 – Binomial Probability

Requirements	Formulas	Using the Calculator		
Fixed number of trials Independent trials Two possible outcomes Constant probabilities	$\mu = n \cdot p$ $\sigma = \sqrt{npq}$ q = 1 - p	 To get the probability of a specific number: 2nd VARS binompdf (n, p, x) (which gives you the probability of getting exactly <i>x</i> successes in <i>n</i> trials, when <i>p</i> is the probability of success in 1 trial). To get a cumulative probability: 2nd VARS binomcdf (<i>n</i>, <i>p</i>, <i>x</i>) (which gives you the probability of getting up to <i>x</i> successes in <i>n</i> trials, when <i>p</i> is the probability of success in 1 trial). <i>IMPORTANT: there are variations on this one, which we will talk about. Be sure to get them clear in your mind.</i> 		
		At most/less than or equal to:	≤	binom c df(<i>n</i> , <i>p</i> , <i>x</i>)
		Less than:	<	binom c df(<i>n</i> , <i>p</i> , <i>x</i> -1)
		At least/greater than or equal to:	≥	1 <i>minus</i> binom c df(<i>n</i> , <i>p</i> , <i>x</i> -1)
		Greater than/more than:	>	1 <i>minus</i> binom c df(<i>n</i> , <i>p</i> , <i>x</i>)


Symbol Summary		<u>Sample</u>	Population
	How many?	п	Ν
	Mean	\overline{x}	μ
	Proportion	\hat{p}	р
	Standard Deviation	S	σ
	Correlation Coefficient	r	ρ

Chapters 6-7-8 – Summary Notes

Ch	Торіс	Calculator	Formulas, Tables, Etc.
6	 Normal Probability Distributions 3 Kinds of problems: 1. You are given a point (value) and asked to find the corresponding area (probability) 1a. Central Limit Theorem. Just like #1, except n > 1. 2. You are given an area (probability) and asked to find the corresponding point (value). 3. Normal as approximation to binomial 	 2nd VARS normalcdf (low, high, μ, σ) 2nd VARS normalcdf (low, high, μ, σ/√n) 2nd VARS invNorm (area to left, μ, σ) Step 1: Using binomial formulas, find mean and standard deviation. 	$z = \frac{x - \mu}{\sigma}$ Table A-2. 3. (cont'd – Normal as approximation to binomial) – Step 2: <u>If you are asked to find</u> P(at least x) P(more than x) P(more than x) P(x or fewer) P(less than x) Normalcdf(-1E99,x+.5,\mu,\sigma) P(less than x) Normalcdf(-1E99,x5,\mu,\sigma)
7	Confidence Intervals1. Proportion $\hat{p} - E 2. Mean (z or t?)\bar{x} - E < \mu < \bar{x} + E3. Standard Deviation$	 STAT > TEST > 1PropZInt Minimum Sample Size: PRGM NPROP STAT > TEST > ZInt OR STAT > TEST > TInt (use Z if σ is known, T if σ is unknown) Minimum Sample Size: PRGM NMEAN 	1. \hat{p} = sample proportion; $E = z_{\alpha/2} \sqrt{\hat{p}\hat{q}/n}$ Min. Sample Size (\hat{p} unknown): $n = \frac{[z_{\alpha/2}]^2 \cdot .25}{E^2}$ Min. Sample Size (\hat{p} known): $n = \frac{[z_{\alpha/2}]^2 \cdot \hat{p}\hat{q}}{E^2}$ 2. \bar{x} = sample mean; $E = z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$ (σ known) or $E = t_{\alpha/2} \frac{s}{\sqrt{n}}$ (σ unknown) Min. Sample Size: $n = \left[\frac{Z_{\alpha/2} \cdot \sigma}{E}\right]^2$
	$\int \frac{(n-1)s^2}{X_R^2} < \sigma < \sqrt{\frac{(n-1)s^2}{X_L^2}}$	3. PRGM >INVCHISQ (to find X_L^2 and X_R^2) PRGM > CISDEV (to find Conf. Interval.)	3. Use Table A-4 to find X_L^2 and X_R^2
8	Hypothesis Tests1. Proportion2. Mean (z or t?)If P-Value < α , reject H ₀ , if P- Value > α fail	 STAT > TEST > 1PropZTest STAT > TEST > ZTest OR TTest 	1. Test Statistic: $z = \frac{\hat{p} - p}{\sqrt{pq/n}}$ See additional sheet on 1- sentence statistic: $z = \frac{\bar{x} - \mu_{\bar{x}}}{\sigma/\sqrt{n}}$ 2. Test Statistic: $z = \frac{\bar{x} - \mu_{\bar{x}}}{\sigma/\sqrt{n}}$ OR $t = \frac{\bar{x} - \mu_{\bar{x}}}{s/\sqrt{n}}$
	3. Standard Deviation to reject H ₀ .	3. PRGM > TESTSDEV	3. Test Statistic: $X^2 = \frac{(n-1) \cdot s^2}{\sigma^2}$ finding Critical Value.

Hypothesis Tests

1-9	1-Sentence Statement/Final Conclusion				
	Claim is H ₀	Claim is H ₁			
Reject H ₀ (Type There is sufficient evidence to		The sample data support the			
1 – reject true warrant rejection of the claim		claim that			
H _o)	that				
Fail to reject H ₀	There is not sufficient evidence	There is <i>not</i> sufficient			
(Type II – fail to	to warrant rejection of the claim	sample evidence to support			
reject false H _o)	that	the claim that			

To find Critical Value (required only for Traditional Method, not for P-Value Method)

Critical Z-Value

Left-Tail Test (1 negative CV)	Right-Tail Test (1 positive CV)	Two-Tail Test (1 neg & 1 pos CV)
2 nd VARS invNorm(α) ENTER	2 nd VARS invNorm(1-α) ENTER	2^{nd} VARS invNorm($\alpha/2$) ENTER

Critical T-Value (when you get to Chapter 9, for TWO samples, for DF use the <u>smaller</u> sample)

Left-Tail Test (1 negative CV)	Right-Tail Test (1 positive CV)	Two-Tail Test (1 neg & 1 pos CV)
PRGM > INVT ENTER	PRGM > INVT ENTER	PRGM > INVT ENTER
AREA FROM LEFT = α	AREA FROM LEFT = $1-\alpha$	AREA FROM LEFT = $\alpha/2$
DF = n-1 ; then hit ENTER	DF = n-1; then hit ENTER	DF = n-1; then hit ENTER

Critical X²-Value

Left-Tail Test (1 positive CV)	Right-Tail Test (1 positive CV)	Two-Tail Test (MUST DO TWICE)
PRGM > INVCHISQ ENTER ENTER	PRGM > INVCHISQ ENTER ENTER	PRGM > INVCHISQ ENTER ENTER
DF = n-1 ENTER ENTER	DF = n-1 ENTER ENTER	DF = n-1 ENTER ENTER
AREA TO RIGHT = $1 - \alpha$	AREA TO RIGHT = α	AREA TO RIGHT: 1^{st} time: $\alpha/2$ (X_R^2)
		2^{nd} time: 1 - $\alpha/2$ (X_L^2)

Chapters 9-10-11 – Summary Notes

	Proportions (9-2)	Means (9-3) (independent samples)	Matched Pairs (9-4) (dependent samples)			
Hypothesis Test (Be sure to use Hypoth Test checklist)	Calculator: 2-PropZTest Formulas: $z = \frac{(\hat{p}_1 - \hat{p}_2) - (p_1 - p_2)}{\sqrt{p\bar{q}}/n_1 + p\bar{q}/n_2}$ $\bar{p} = (x_1 + x_2)/(n_1 + n_2)$ $H_0: p_1 = p_2; H_1: p_1 < or > or \neq p_2$	Calculator: 2-SampleTTest $t = \frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2)}{\sqrt{s_1^2/n_1 + s_2^2/n_2}}$ $\mu_1 - \mu_2$ $\mu_1 - \mu_2$ $\mu_1 - \mu_2$ μ_2 $\mu_1 - \mu_2$ $\mu_1 - \mu_2$ $\mu_1 - \mu_2$ $\mu_1 - \mu_2$ $\mu_1 - \mu_2$	Calculator: (1) Enter data in L1 and L2, L3 equals L1 – L2; (2) TTest (which gives you all the values you need to plug into the formula) $t = \frac{\bar{d} - \mu_d}{s_d / \sqrt{n}}$ $\mu_d always = 0$ $H_0: \mu_d = 0; H_1: \mu_d < or > or \neq 0$			
Confidence Interval	Calculator: 2-PropZInt.	Calculator: 2-SampleTInt	Calculator: TInterval			
		0, then fail to reject. If α for a 1-tail Hypo. Test	t is .05, the CL for Conf. Int. is 0.9 (1 - 2α).			
Hypothesis Test: Is there correlation between two <i>x</i> and <i>y</i> ? (10-2) r is the sample correlation coefficient. It can be betw and 1. When you have 2 variable how do you predict <i>y</i> whe given a particular <i>x</i> -value	variables,you if there is a lineaInterpretation: x is tInterpretation: x is tcorrelation. So, if P-veen -1NO linear correlationCalculator: To createof plot. Then Zoom yes x and y,Two possible answeren you are(1) If there is a signification	correlation. The test statistic is r, which measure explanatory variable; y is the response variable? y is the response variable? (alue < α , you reject H ₀ , so there IS a linear correlation of a scatterplot: Enter data in L1 and L2, then Line (ZoomStat). To delete regression line from grass:	ble. H_0 : there no linear correlation; H_1 : there is a linear elation; if P-Value > α , you fail to reject H_0 , so there is RegTTest; then 2^{nd} $Y =$ Plot 1 On, select correct type aph, $Y=$, then clear equation from Y1. nine the <u>Regression Equation</u> (y = a + bx; LinRegTTest			
When you have 2 variable how do you predict an in estimate for y when you a particular x-value? (10-4	(2) If there is no signes x and y,1.PROGRAM, INVTterval2.PROGRAM, PREDare givento get the Interval					
How much of the variation explained by the variation (10-4)	on in y is n in x?The percentage of valueCalculator: to find r2 variation in [y-variab	e in words] can be explained by the variation ir	ill give you r^2 . 1 sentence conclusion: " $[r^2]$ % of the			

Finding Total Deviation ,	Variation and Deviation are similar, but different. Variation relates to ALL the points in a set of correlated data. Deviation
Explained Deviation, and	relates to ONE specific point in a set of correlated data. Total Deviation for a specific point = $y - \bar{y}$ (the actual y-
Unexplained Deviation,	coordinate of the point <u>minus</u> the mean of all the y values). Explained Deviation for the point = $\hat{y} - \bar{y}$ (the predicted value
for a point. (10-4)	of y when the x-coordinate of that point is plugged into the regression equation, <i>minus</i> the mean of all the y values).
	Unexplained Deviation for the point = $y - \hat{y}$ (the actual y-coordinate of the point <u>minus</u> the predicted value of y when the
	x-coordinate of that point is plugged into the regression equation).

Chapter 11 – Chi-Square (X ²) Problems (Hypothesis Tests, use checklist)					
Claim to be tested	Calculator	Formulas, etc.			
The claim that an observed	Enter O data in L1 and E data in L2.	Two types of claims: equal proport	ions or <i>unequal</i> proportions:		
proportion (<i>O</i>) < or = or > an	PROGRAM BESTFIT ENTER	 Equal: H₀: p₁=p₂=p₃; H₁: at I 	east one is not equal		
expected proportion (E). This	Enter number of categories (k),	• Unequal: H ₀ : p ₁ =.45, p ₂ = .3	5, $p_3 = .20$; H_1 : at least one is not equal to the claimed		
is called "goodness of fit."	then Enter,	proportion			
(11-2) *3 SAMPLES WITH	Gives you Chi-Square (X^2) and P-	Test Statistic is X ² (Chi-Square)	Hypothesis Test is always right-tail		
PROPORTION*	Value	$X^2 = \sum \frac{(O-E)^2}{E}$	• To find P-Value from Test Stat: X ² cdf(TS,1E99,k-1)		
Given a table of data with	2 nd MATRX EDIT, select [A], make	Example hypotheses: H ₀ : pedestrian fatalities are <i>independent</i> of intoxication of driver ;			
rows and columns, the claim	sure number of rows and number	H ₁ : pedestrian fatalities <i>depend</i>			
that the row variable is	of columns are correct, then enter	on intoxication of driver.	<i>E</i> (the expected value) for any cell = (row total x		
INDEPENDENT of the column	the values in the matrix.	$X^2 = \sum \frac{(O-E)^2}{2}$	column total) / grand total, OR get all E-values on		
variable. This is called	STAT Tests, X^2 – Test; Observed is	E	calculator with 2 nd MATRX Edit [B] Enter		
"contingency tables." (11-3)	[A] and Expected is [B], hit Calc; it	To find X^2 CV, df = (r-1)(c-1).			
	gives you X^2 and P-Value.				

Chapter 11 – Analysis of Variance (ANOVA) (Hypothesis Tests, use checklist)					
Claim to be tested	Calculator	Formulas, etc. (must show formulas in both symbolic form and also with given data plugged in, but can get the answer from calculator)			
The claim that 3 or more population <u>means</u> are all equal (H_0), or are not all equal (H_1). This is called "Analysis of Variance." (11-4) * 3 SAMPLES WITH MEAN*	Enter data in L1, L2, etc. STAT Tests, ANOVA (L1, L2, L3). Gives you F and PV, but also gives you Factor: df, SS and MS, and Error: df, SS and MS, which you need to plug into the formula.	The test statistic is F. H_0 : $\mu_1 = \mu_2 = \mu_3$; H_1 : at least one mean is not equal. F = <u>SS Factor</u> <u>df</u> = <u>MS Factor</u> <u>SS Error</u> df MS Error MS Error			
		MS(total)=SS(total)/(N-1). N=total number of values in all samples combined			

Overview of Chapters 7, 8 and 9

ONE-Sample Problems

Chapter 7 Chapter 8

Type of Problem	Confidence Interval	Hypothesis Test
Proportion	1-Prop Z Int	1-Prop Z Test
Mean – σ known	Z Interval	Z Test
Mean – σ unknown	T Interval	T Test
Standard Deviation	PRGM S2INT (Toma); or PRGM INVCHISQ + PRGM CISDEV	PRGM S2TEST (Toma); or PRGM TESTSDEV

Type of Problem	Confidence Interval	Hypothesis Test	
Proportion	2-Prop Z Int	2-Prop Z Test	
Mean – Independent Samples	2-Samp T Int	2-Samp T Test	
Mean – Dependent Samples (Matched Pairs)	T Interval	T Test	

TWO-Sample Problems

Chapter 9

Minimum Sample Size Problems (Chapter 7)

Chapter 7 also has another kind of problem, called **Minimum Sample Size** Problems.

These problems may ask you to find the minimum sample size, but usually they just say "How many ...?"

Minimum Sample Size problems can be **Proportion** problems, Mean problems or Standard Deviation problems.

- **Proportion** problems: Use PRGM NPROP. This program asks you for SAMPLE P. If the problem gives you a Sample P (like 60%), then just enter that, as a decimal. If the problem does NOT give you a Sample P, then enter 0.5.
- Mean problems: Use PRGM NMEAN.

Both programs (NPROP and NMEAN) ask you for the Margin of Error. Sometimes the Margin of Error is clear from the problem. But if you see the word "within" in the problem, the margin of error is whatever comes immediately after the word "within."

• **Standard Deviation** problems: You are very rarely asked to find the Minimum Sample Size for a Standard Deviation problem. The only way to answer this kind of problem is by looking at the table in the Triola Text, which is on page 364 of the 4th Edition.

Finding the key words in a problem (Ch. 6, 7 and 8)

Sample Problem	Key Words	Sample Statistics
 Assume that heights of men are <u>normally distributed</u>, with a mean of 69.0 in. and a standard deviation of 2.8 in. A day bed is 75 in. long. <u>Find the percentage</u> of men with heights that exceed the length of a day bed. 	"normally distributed" tells you it's probably a Ch. 6 question. "Find the percentage" tells you it's a Type 1 Ch. 6 question (use normalcdf)	NA
2. Assume that heights of men are normally distributed , with a mean of 69.0 in. and a standard deviation of 2.8 in. In designing a new bed, you want the length of the bed to equal or exceed the height of at least 95% of all men. <u>What is the minimum length</u> of this bed?	"normally distributed" tells you it's probably a Ch. 6 question. "What is the minimum length" tells you it's NOT a Type 1 Ch. 6 question, so it's a Type 2 Ch. 6 question (use invNorm)	NA
3. The cholesterol levels of men aged 18-24 are normally <u>distributed</u> with a mean of 178.1 and a standard deviation of 40.7. If 1 man aged 18-24 is randomly selected, <u>find the</u> probability that his cholesterol level is greater than 260.	"normally distributed" tells you it's probably a Ch. 6 question. "Find the probability" tells you it's a Type 1 Ch. 6 question (use normalcdf)	NA
4. In a <u>poll</u> of 745 <u>randomly selected</u> adults, 589 said that it is morally wrong to not report all income on tax returns. <u>Construct a 95% confidence interval</u> estimate of the <u>percentage</u> of all adults who have that belief.	"poll" and "randomly selected" both tell you the sentence is about a sample . "Construct a confidence interval" tells you you're constructing a confidence interval (Ch. 7), NOT testing a hypothesis (Ch. 8). "Percentage" tells you it's a proportion problem, not a mean or standard deviation problem.	n = 745 x = 589
5.You must conduct a survey to determine the <u>mean</u> income reported on tax returns. <u>How many</u> randomly selected adults must you survey if you want to be 99% confident that the <u>mean</u> of the sample is <u>within</u> \$500 of the true population mean?	"How many" tells you you are finding a minimum sample size . "Mean" tells you you're finding a minimum sample size for a mean , not for a proportion. "Within" tells you that the next thing you see (\$500) is the margin of error .	NA
6.A simple random sample of 37 weights of pennies has a mean of 2.4991g <u>and a standard deviation</u> of 0.0165g. <u>Construct a 99% confidence interval</u> estimate of the <u>mean</u> weight of all pennies.	"Construct a confidence interval" tells you're constructing a confidence interval (Ch. 7), NOT testing a hypothesis (Ch. 8). "Mean" tells you you're constructing a confidence interval for a mean , not for a proportion. The phrase "and a standard deviation" is in a sentence about the sample , so you know the sample standard deviation (<i>s</i>), but you don't know the population standard deviation (σ), so you will use t , not z.	n = 37 $\bar{x} = 2.4991$ s = 0.0165

7. The Town of Newport has a new sheriff, who compiles <u>records</u> showing that among 30 recent robberies, the arrest <u>rate</u> is 30%, and she <u>claims</u> that her arrest <u>rate</u> is higher than the historical 25% arrest rate. <u>Test her claim</u> .	"Records" tells you you are getting information about a sample . "Rate" tells you that this is a proportion problem, not a mean problem or standard deviation problem. "Claim" and "Test her claim" tell you that this is a Hypothesis Test (Ch. 8) not a Confidence Interval (Ch. 7).	n = 30 $\hat{p} = .3$ $x = n \cdot \hat{p} = 9$
8. The totals of the individual weights of garbage discarded by 62 households in one week have a mean of 27.443 lb. <u>Assume</u> that the standard deviation of the weights is 12.458 lb. Use a 0.05 <u>significance level</u> to <u>test the claim</u> that the population of households as a <u>mean</u> less than 30 lb.	 "Assume" tells you that the standard deviation you are being given is a population standard deviation (σ), so you will use z, not t. "Test the claim" tell you that this is a Hypothesis Test (Ch. 8) not a Confidence Interval (Ch. 7). "Mean" tells you you are testing a claim about a mean, not about a proportion or standard deviation. "Significance level" is α (alpha) 	n = 62 $\bar{x} = 27.443$ $\sigma = 12.458$ $\alpha = 0.05$

Chapter 8 - Frank's Claim Buffet

The Claim in Words	Claim Buffet			
1. Test the claim that less than 1/4 of such adults smoke.				
	P	>	Some	
	μ	$\overline{\langle}$	number = .25	
	σ	¥		
		=		
2. Test the claim that <u>most</u> college students earn bachelor's degrees within 5 years	P	\bigcirc	Some	"most"
	μ	<	number = .5	just means
	σ	≠		more than half
		=		
3.Test the claim that the mean weight of cars is less than				
<u>3700</u> lb	Р	>	Some	
	μ	$\overline{\langle}$	number = 3700	
	σ	¥		
		=		
4.Test the claim that fewer than 20% of adults consumed		-	1	_
herbs within the past 12 months.	P	>	Some	20% tells
	μ		number = .20	you the claim is
	σ	¥		about a proportion
		=		

5.Test the claim that the thinner cans have a mean axial		-		
load that is <u>less than 282.8</u> lb	Р	>	Some	
		\bigcirc	number =	
	Ψ		282.8	
	σ	≠		
		=		
6.Test the claim that the sample comes from a population				
with a <u>mean equal</u> to <u>74</u> .	Р	>	Some	
		<	number =	
	μ		74	
	σ	≠		
		=		
7.Test the claim that the standard deviation of the				
weights of cars is <u>less than 520</u> .	Р	>	Some	
	μ	<	number = 520	
	σ	¥		
		=		