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Abstract 
Falls and injuries are inevitable for seniors for over sixty five. Traditional fall detections              

are good immediate solutions, but they consist of several drawbacks. The objective of our              
research is to develop a three-dimensional all fall system that will accurately alert the EMS when                
a sudden event like a sudden fall happens. In addition to that, our system will take preventative                 
actions to facilitate behavior changes before a fall emerges by studying gait characteristics. The              
proposed system will consist of accelerometers to monitor the floor vibration. From the collected              
data, and using post processing techniques listed throughout this paper. Fall severity, fall             
location, and stride length are able to be detected and quantified. Physical experiments were              
conducted at San Francisco State University to help develop and verify the algorithm being used.               
The results from these experiments are presented in this paper. 

 

1.0 Introduction 
Falls and sudden illnesses are inevitable events for the senior population. There are many              

consequences to falling, such as broken bones or head injuries. According to the Centers for               
Disease Control, one in four people over 65 will suffer from a fall [1]. In 2015, the total medical                   
cost for falls totaled more than $50 billion [2]. The United States is aging at a rapid rate due to                    
higher life expectancy. By 2060, 98 million U.S residents will be over 65 and it is overly                 
concerning, as that will make up about one quarter of the total U.S. population. ​The recognition                
and response time of falls is a great predictor for the outcome of the patient. Prolonged time                 
before receiving medical help may result in adverse outcomes related to mortality [3].  

While there are already a variety of medical alert systems available, their working             
principles include drawbacks. For example, medical pendants are devices that are activated after             
a button is pressed; however, if the person is unconscious, they would not be able to operate it.                  
The smart watch is another device that is commonly used. After it detects a fall, followed by                 
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little to no movement within a minute, it will contact emergency medical services. However, it               
relies on battery power and needs to be recharged every 15 hours. That being said, it can contact                  
emergency services even when the person has not fallen. Both of the medical alert systems               
mentioned above also require the devices to be worn at all times for them to be effective.                 
Another system involves using surveillance cameras to monitor behavior and detect fall events             
through image processing, but this is resource intensive and invasive for those being monitored.              
These working prototypes are only immediate solutions, but they are not suitable for the elders as                
they can be non-intuitive and invasive for the users.  

Similarly studying stride characteristics and gait will allow us to evaluate a patient’s             
walking patterns and encouraging them to adopt evidence-based prevention strategies before a            
serious fall occurs. Low gait speed has been a greater indication of predicting mortality rates. In                
addition to that, people who suffer from chronic diseases related to stability or haven't’              
completely healed from a hip injury is likely to suffer from another fall. In recent studies,                
evaluating the physical performances such as the gait speed allowed clinicians to identify             
individuals who are vulnerable of falling. They’ve investigated the association between low gait             
speeds and the risk of falling by observing elderly living in a small Norwegian municipality. The                
mean gait speed was 1.0 m/s and the participants that was below 1.0 m/s indicating increased risk                 
of falling. [4] Other basic gait parameters that are frequently studied are velocity, step length,               
and step frequency.[5] Current gait analysis techniques are being conducted through wearable            
devices, walking on devices, and visual aids and tools. Wearable devices have a fairly short               
battery life and computational visual aid extraction can become expensive making these            
techniques impractical. On the other hand, if we study the vibration of the floor, we can derive                 
some of the basic human gait characteristics. ​  

The objective of our research is to develop a three-dimensional fall system that will              
accurately alerts the EMS when a sudden event. like a fall, has occurred. In addition to that, our                  
system will take preventative actions to facilitate behavior changes before a fall emerges. The              
proposed system will use accelerometers to monitor the floor vibration. From the collected data,              
and using post processing techniques listed in this paper, fall severity, fall location, and stride               
length are able to be detected and quantified. Physical experiments were conducted at San              
Francisco State University to help develop verify the algorithm being used. Results from these              
experiments are presented in this paper. 

 

2.0 Methodology​ 
Methods of how experimental data was post processed is presented in this section. Data              

Acquisition, Fast Fourier Transform, windowing, and transfer function are defined, and how            
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these methods are combined to estimate fall severity, identify fall location, and extract stride              
length are explained.  

 

2.1 Data Acquisition 
To proceed with our experiment, we needed used Data Acquisition to input all the              

necessary parameters for our testing. Data Acquisition is one of the main tasks that our group                
focused on, and without a proper data acquisition, our data would not have produced any desired                
results, let alone back-calculating force inputs, and computing a transfer function. In the             
development process of the codes, the flowchart below allows developers to follow a general              
idea as to how this series of codes will work as seen in Figure 1.  

 

Figure 1​: Data Acquisition flowchart. 

The two main components of this code development are running the experiments and             
collecting data, and the primary objectives of this series of codes are: 

1. to quantitatively simplify the process of configuring sensors;  
2. to reduce any means of unnecessary repetition;  
3. to identify channels and associate it with appropriate sensors;  
4. to store large quantity of data in a timely fashion;  
5. to return any necessary numerical values and assign to particular          

variables/parameters.  
 
In all the objectives listed above, the most important objective of this code is to allow the                 

computer to efficiently acquire data from and communicate with the DAQ device(s)/ Chassis(es)             
as listed in the section above.  
 

The procedure of this code is, first, to start running the experiment and a new trial each                 
time with the codes. Then, the codes start to prompt users for inputs, such that it asks for whether                   
to begin the experiment, the experiment types, sensor types, sensor models, sensor series, range,              
units, sensitivity, bias level, etc. “Run_Experiment” primarily calls other functions while           
prompting users for inputs to perform certain tasks and collect certain variables and data. The               
code first asks if user wants to conduct a new trial of experiment, then asks if user(s) wants to                   
use previous setups, or if user wants to conduct another trial using different sensors. After that,                
“add_new_sensor” will be called to add new sensors to the .json dictionary if the sensor’s model                
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and series are not yet registered. Lastly, it prompts user(s) for the type of experiments of either                 
“finite” or “continuous”, calls “setup” for the configuration of the experiment, which then calls              
the “identify_channel” to do so. All in all, “Run_experiment” is the section of code that retrieves                
the necessary variables to call other functions and bring all the essential portions of the codes                
altogether. Based on the user’s preference, the codes will return a series of data as collected                
within the prompted duration, or until the data collection is over. When the user begins to                
conduct an experiment using the codes, it will prompt the user(s) for inputs, such that the codes                 
will perform the task accordingly. The codes will not run entirely/smoothly if it runs into an                
error, even though some entries of sensors’ data will be saved.  
 
2.2 Fast Fourier Transform  

We utilized Fast Fourier Transform (FFT) to better understand signals, that we extracted             
during the data acquisition phase. FFT is a different way to view a time domain signal. The fast                  
Fourier transform is a mathematical algorithm for transforming a signal in the time domain to the                
frequency domain. Figure 1. below displays Fourier theorem, he proved that any continuous             
function could be replicated by an infinite sum of sine and cosine waves. Figure 2 shows the                 
output passing the red signal in figure 1 through an FFT. The frequency domain is useful in                 
displaying different forms of frequencies helping us differentiate between noise versus actual            
forces that are significant to our research.  

 

Figure 2: Blue series represent sinusoidal waves with varying frequency. Series in red is the                
combination of all of the blue series 
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Figure 3: Fourier takes an input function f (in red) in the time domain and converts it into a new                    
function (blue) in the frequency domain.  

 

2.3 Windowing 
We use windowing to get a better understanding of a certain signal because of the               

limitations of FFT. When we use FFT to measure the frequency of a signal, we are comparing                 
the analysis on a finite set of data. The FFT transform assumes the finite data set is a continuous                   
spectrum that is one period of a periodic signal. Both the time domain and frequency domain are                 
circular topologies, so the two endpoints of the time waveform are seen as attached together.               
When the signal that we measured is periodic and an integer number of periods fill the                
acquisition time interval, the FFT matches this assumption. 
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Figure 4:​ Measuring an integer number of periods (A) gives an ideal FFT (B). 

However, if the measured signal is not an integer number of periods, the measured signal               
may produce a truncated waveform. This waveform will have a different characteristic than the              
original continuous-time signal, and the finiteness will cause different transition changes into the             
measured signal making it discontinuous. When the acquisition is not an integer, the endpoints              
are discontinuous. These discontinuities are present in the FFT as high-frequency components            
and does not show in the original signal. The spectrum you get by using FFT is not the same                   
spectrum as the original signal, but rather a condensed version. When energy at one frequency               
leaks into other frequencies, this phenomenon is known as spectral leakage. Fine spectral lines              
tend to spread out into wider signals.  
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Figure 5:​ Measuring a non-integer number of periods (A) adds spectral leakage to the FFT (B) 

There are a variety of windowing functions are three, but the windowing functions we              
used are Hamming, Hann and Kaiser-Bessel. The main windowing function we are using is the               
Kaiser-Bessel window that centers the data in the midpoint. We are applying this to our               
experiment by centering the data by taking the peak and putting it in the middle which creates a                  
midpoint. This allows us to implement the Kaiser-Bessel to get an accurate results which then we                
can apply using equation (7). The Hamming and Hann window is used to increase frequency               
resolution, and reduce spectral leakage. These two windows both have sinusoidal shape, but the              
Hann window touches zero at both ends eliminating all discontinuities, while the Hamming             
window doesn’t touch zero, but stops at zero meaning that it will have a slight discontinuity.  
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Figure 6:​ Hamming and Hann window result in a wide peak, but nice low side lobes. 

 

2.4 Transfer Function 
A Transfer Function models a physical system in the frequency domain by algebraically             

relating the system output to the system input. Since the sensors being used in this research will                 
only measure the floor vibration (output of the system), we need to be able to calculate the input                  
into the system for a given event and estimate the force of that event.  

T F ij =  Inputi

Outputij (1) 

Where represents a portion of the test specimen between a certain location and a T F ij               
certain sensor, represents the output of the system for a certain sensor, and  Outputij             Inputi  
represents the input into the system at a particular location. In order to develop a given transfer                 
function the output and input of the system must be represented in the frequency domain, using                
equation (1) and (2).  
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utput F T (Acc )O ij = F ij (2) 

F T (Impact Hammer )Inputi = F i (3) 

Where is the captured response from a given sensor in the time domain, Accij              
is the measured input into the system in the time domain.Impact Hammeri  

2.5 Force Estimation 
Before estimating the force of an event, the authors utilize the average transfer function              

for a specific system. The average transfer function is used to mitigate the “noise” captured when                
developing individual transfer functions. “Noise” is inherently present in the testing           
environment, and the authors are assuming that it is random in nature. Therefore, by averaging               
individual transfer functions random sources of noise will be mitigated and not affect the              
estimation of forces.  Average transfer function is calculated in equation (4).  

T f Avgij
=  n

∑
n

i=1
T f ij

  (4)  

The equation is the average transfer function where we take the sum of the  T f Avgij
             

transfer functions. is the summation of the calibration trails. The variable is the transfer  ∑
n

i=1
          T f ij     

function of a given location on the test specimen and an output sensor. The variable ​i ​is the                  
location, j ​is the sensor, and ​n ​is the number of calibration trials used to develop the average                  
transfer function.  

inputij = T fAvgij

outputj  (5) 

Equation (5) is used to back calculate the input of a given event. Where the variable                
is the output of a certain sensor in the frequency domain, and the is the calculatedoutputj              inputij     

input into the system in the frequency domain. To convert the calculated input from the               
frequency domain to the time domain the inverse FFT is used, as seen in equation (6).  

orrcoef (input )c = c ij (6) 

In MATLAB, we use the variable ​c ​to calculate the correlation coefficient provided by              
the force found in the stomp trials. In the stomp trials, we are going to apply the correlation to                   
every single average transfer function that is developed in every single node. Ideally, the              
correlation will be the highest value when we use the transfer function to identify where exactly                
a person is stepping. What correlation is doing produces a 3x3 matrix where it compares values                
to each other. Eventually, we will compare three values giving us a high or low correlation                
coefficient. A high correlation coefficient means that a sensor receives the most impact             
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acceleration and a low means that it received less. Correlation will give an output of a value                 
between 1 and -1 meaning that if it’s closer to 1, the signal is more alike and if it’s not close to 1,                       
then it’s not going to be the same signal. 

 

2.6 Identify Location 
To find the location we will be utilizing a method that is known as Correlated Force                

Estimates Method. First, a portion of data is obtained based on the maximum amplitude within               
the data collected from all sensors for an individual trial. This portion contains 50 data points to                 
the left of the maximum, and 500 data points to the right of the maximum. This is due to the                    
method not relying on time and so force estimates will show as peaks across all sensors. The                 
output collected from each sensor is used to estimate the force using the average transfer               
functions at each location within the test room. After each force is estimated the correlation               
between each calculated input for a given location is calculated using the Pearson Correlation              
Method. This method gives us an output of 1 and -1 that tells us which two variables are linearly                   
related. The closer the correlation the closer it is to 1 and if it’s -1 it’s farther from the                   
correlation. The correlation method used above calculates a correlation coefficient matrix like            
below: 

 

Figure 7:​ ​Matrix for finding the highest correlation using force estimate [Eq. 5] 

 ax(max(correlation matrix))Li = m  (7) 

The equation takes the maximum value of a matrix in Figure 7 that represents the   Li              
maximum value of each node calculated in equation (5). Equation (7) is used to calculate the                
max(max(correlation matrix) which calculates the correlation coefficients then it is compared to            
the location (nodes) of the largest value that tells us the location of the impact. The reason for                  
this approach is to provide redundancy when more sensors are added, and in turn more force                
estimates. By taking the highest correlation values, error in locating the impact will be reduced.               
This along with the fact force estimates maintain similar shapes helps increase localization of              
this robust method. 
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For our experiment, each input calculated by the force estimate script, a correlation             
function within MATLAB that will return a 6x6 matrix that corresponds to how well the data                
matches each sensor. The matrix are the six accelerometers in a square pattern, meaning its rows                
and columns represent the six accelerometers. Each matrix is then representative of a particular              
node. The values of each matrix are on a scale from –1 to 1, where –1 is no correlation and 1 is                      
complete correlation. For our research purposes we would like to make sure that each matrix is                
as close to 1 as possible. This is so we can have a good idea of which node has the most                     
correlation to the input data and therefore identify where the input occurred. With our current               
working code, we will be able to identify a person’s specific gait parameters such as stride length                 
or velocity. 

 

3.0 Data Collection  
In the following paragraphs we will talk about the experimental set up and the procedures               

we performed to collect the necessary data.  

3.1 Experiment Setup  
We used a room that is 11 ft. by 27 ft. Our room contained some furniture, but it did not                    

move during testing. We used a total of seven sensors: six accelerometers and an impact               
hammer.  

Sensor Model Serial Number Sensitivity 

Impact Hammer PCB 086D05 36630 0.23  lbf
mV 5%± 1  

Accelerometer 1  PCB 393B31 51836 9.77 ±5%g
V  

Accelerometer 2 PCB 393B31 51835  9.71 ±5%g
V  

Accelerometer 3 PCB 393B31 51820  9.95 ±5%g
V  

Accelerometer 4 PCB 393B31 51815 9.98 ±5%g
V  

Accelerometer 5 PCB 393B31 51819  9.94 ±5%g
V  

Accelerometer 6 PCB 393B31 51814  9.73 ±5%g
V  
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Table 1:​ The list of sensors we used throughout our experiment. 

The impact hammer and six accelerometers are all made by PCB Electronics. The purpose of               
laying these accelerometers is to capture floor vibration at different locations in the test room. At                
least two accelerometers are needed to identify the location of an event. We are using a 4-slot,                 
USB CompactDAQ-9174 Chassis made by National Instruments. We are using two C Series             
Sound and Vibration Input Module NI-9234 with 4-Channel per module. Diagram below shows             
the layout of our room and placements for our accelerometers.          

Figure 8:​ A top down view of the layout of our experiment setup 

3.2 Procedure 
The layout of grid pattern is a 4 x 27 matrix, which consists of 108 nodes laid in a grid                    

pattern spanning the length of the lab shown in Figure 7. These nodes represent different               
locations of the floor. In addition to the node layout, the placement of the accelerometers is such                 
that we are able to walk in a straight line and walk randomly while stepping on a node and                   
collect the necessary results while also keeping them at a safe distance. The somewhat random               
placement of the accelerometers is in part due to the fact that a unique layout will give more                  
unique results and less repetitive results.  

In order to develop the transfer functions for each accelerometer in Equation 1. We              
conducted one type of calibration by using the impact hammer. We hit the impact hammer on                
each node once per trial, for a total of three runs. When we hit the impact hammer on a node, it                     
records the force in Newtons. This would be the input of our data in equation (3). The                 
accelerometers on the other hand, records the acceleration when the floor vibrates due to the               
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force the impact hammer emits on the floor. This would be the output of our data in equation (2).                   
They send the collected data to the DAQ device to further process the data given in Figure 1. The                   
data we produce will ultimately create the transfer functions that we will us in equation (1). Now                 
that we’ve developed our transfer functions, we conducted multiple experiments (a total of 791              
Runs) such as three variations by hitting the ground using a person’s foot. In one trial, we used                  
the toe, another the heel and the final a full foot on the node with a combined trial of 500. We                     
conducted this experiment in order to calculate the average transfer function in equation (4), so               
then we can use equation (5) to find out how much force each time a person’s foot hits the                   
ground. We conducted two more trials: walking randomly while stepping on a node and walking               
on a straight-line back and forth while stepping on every other node. The data produced by these                 
trials will provide us more force inputs and transfer functions to eventually use the correlation               
coefficient in equation (6) to find where exactly is person stepping.  

When collecting the data, we ensured that the data was as “clean” as we could allow.                
Meaning we re-did some trials to get data that resemble each other as seen in Figure. An example                  
would be a trial where we hit the node and a person walked by or a chair moved. This would                    
constitute in “noisy” data and a redo would happen. We did this process to hopefully produce                
good post processing results and data. What we mean by “clean” data is that we ran all trials in a                    
controlled environment, where few uncontrolled variables could cause unintended spikes in data,            
and that environment was inside the lab.  

Calibration Run 
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Figure 9:​ Low noise input and output data from one of our trial runs. 

However, the activities outside the lab and in the hallways of the building contribute to               
the interference of signals. If the interference of the signals is too strong, the particular run would                 
be invalid and thus we would have to rerun the trial. Due to the extremely high sensitivity of the                   
sensors, which allows sensors to pick up signals even beyond the walls and doors, they can                
detect random noises from outside the lab walls. Such noise could be considered a source of                
interference, be it a phone dropping, a person walking in the hallway, a person closing a door, or                  
a train passing by. These such vibrations would cause the floor to move just enough for the                 
accelerometers to detect them. The building in which our lab is located, is next to a busy                 
commercial street that has a train line, so there were some variables that caused most of the noise                  
in the data. 

Foot trials 

 

Figure 10:​ High noise input and output data from one of our trial runs. 
 

3.0 Results  
A total of 791 runs has been recorded throughout this experiment. We used 3 trials from                

the impact hammer and 3 trials from the foot stomps that occurred at node 1 to generalize the                  
entire data set. We discovered that without any windowing function, the statistical measure that              
associated those transfer functions to the certain nodes, had a fair correlation coefficient. In order               
to strength that correlation coefficient we decided to apply secondary post processing methods             
such as hanning, hamming, and kaiser windowing functions.  
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Trials 383 100.00% 

Exact 7 1.83% 

Close 22 5.74% 

Moderate 135 35.25% 

Fail 219 57.18% 
Figure 11: ​Correlation Coefficient of the Force Est. and Transfer Function 

We applied the the windowing methods 9 different combinations. Using 50 data plots             
before the peak and 500 after the peak. The data set tells us that combination 5 had the least                   
variability, however the correlation coefficient was very low. The Kaiser windowing function            
had higher coefficients and relatively low standard deviations. Proceeding forward we decided to             
scale down the data points to observe if it provided us with more accuracy.  

 

Trials 32 100.00% 

Exact 4 12.50% 

Close 13 40.625% 

Moderate 14 43.75% 

Fail 1 3.125% 
 

 
Figure 12: ​Correlation Coefficient of the Force Est. and Transfer Function with portion of the               
data -50,+50 

As a result, we were successful in providing vital information about magnitude of where the fall                
was occurring.  
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4.0 Discussion 
An area we experienced miscalculations was when it came to the combining of the code,               

we wrote with the DAQ chassis. Initially, when DAQ chassis is powered up and then               
immediately ran our code, the data collected would be the supply voltage that the DAQ had used                 
to power itself and not the impact inputs of the sensors. This would return values that we were                  
not expecting and so we would have to restart the data collection process. Another area of                
miscalculation is the data itself. For our purposes, we ideally wanted the data to be in the center                  
of the length of each experiment, five seconds. We wanted this to be able window a portion of                  
the actual data to better analyze the force of the impact. However, we captured some of the trials                  
of data too early and it resulted in these trials being too close to the beginning to use and were                    
ignored. This is important since for various post-processing techniques, we took 50 data points              
before and 500 data points after the event as our baseline data. This became problematic for us to                  
use these techniques as some required windowing functions that needed symmetrical data to             
work properly. 
 
 
5.0 Conclusion 

The development of a sophisticated post-processing algorithm that calculates acceleration          
amplitudes of the sensors being affected by distance to the impact. This algorithm operates by               
rst calibrating likely fall locations around a node, force and location of an impact. Additionally,               
sensors do not need to be time-synchronized as frequencies are. This makes the algorithm easier               
to implement and less costly; computation-wise, to use. Correlation was found to be the best               
method that gave reasonable results without the aid of windowing. In finding the correlation              
between sensors, we then extracted the maximum correlation value, and had that represent the              
node from which it originated. Therefore, the higher the correlation the more likely the fall               
would take place at the node. This method of the highest correlation value has some promising                
results, but more experiments are needed to further confirm the effectiveness of the method. The               
method used to determine the outcome was to evaluate which nodes had the maximum value for                
each run and compare it with which node the run actually happened at. Then we took the                 
difference between the maximum node and the actual node. If the difference was 0, then the                
method was exact; if it was 1, then the method was close; if it was between 2 and 8, then the                     
method was off by a larger margin; if it was above 8, then the method did not give the right node.                     
In addition, the use of various post-processing methods became important as to improve the              
accuracy of the data while keeping the original data. This method was started and the results did                 
get definitely better; the data showed which nodes had the maximum correlation within one node               
difference. With further extensive research, a compatible method will be chosen for all future              
experiments to provide accurate and reliable data.  
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Future Work 
Research into modeling human activity from structural vibrations would provide avenues           

for predicting a condition change of the user, such as the possibility of an oncoming fall. More                 
work into using signal selection, such as manually categorizing more records in the human              
activity database would provide more insight into the effectiveness of the method. Exploring how              
to optimize signal preprocessing for better response time and algorithm. 
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