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Abstract 
 

This research internship is planned over the course of 10 weeks of summer where 
community college student interns are assigned a graduate student mentor and a faculty advisor. 
This paper presents the details of this project, research, educational objectives, results obtained, 
and the student surveys assessing the outcomes. The goal of this research is to create a deployable 
autonomous robot for the Jetson TX1 for live image classification. To reach this goal, students 
will learn how to create a custom data set, how to turn data sets into models using Nvidia DIGITS, 
and create a custom neural network using caffe architecture. We achieved our goal by producing 
five iterations of the same datasets, creating a custom multilayer perceptron (SimpleNet), and 
creating a custom convolutional neural networks (KeviNet). The same dataset was deployed on all 
three neural networks and tasked to detect human objects at 5ft and 10ft. A standard network, 
AlexNet, was used as the baseline comparison. From testing, it was concluded that AlexNet was 
the most accurate with a large overhead, KeviNet has similar accuracy with AlexNet with moderate 
overhead, and SimpleNet being the least accurate with little overhead.  

Introduction   

The purpose of this project is to give community college students an opportunity to work 
with new tools and gain experience outside of the classrooms. The main goal of this project is to 
create a deployable custom neural network that can be utilized with the Jetson TX1. This custom 
neural network would emulate the capabilities of an autonomous self-driving vehicle. Through the 
use of deep learning, a model will be created to detect and classify humans. Additionally, the 
students will learn how to create a custom dataset for their suited environment. Overall, students 
will learn the basic structure for deep learning and its current state in the industry. 

Background 

Jetson TX1 
 
 The world’s first supercomputer that is on a module, capable of delivering performance 
and power efficiency needed for computing applications. Created by NVIDIA, the Jetson TX1 
runs off of Linux, and provides 1TFLOPS of FP16 computing performance in only 10 watts of 
power. The Jetson is equipped with the Nvidia Tegra X1, which combines a 64-bit quad-core 
ARM Cortex-A57 CPU with a 256-core Maxwell GPU. The design of the Jetson was built 
specifically for AI and deep learning all within a 170 mm x 170 mm size capable of fitting in a 



mini-ITX motherboard. In the image below we get to see a visual representation of the Jetson 
TX1 developer kit. The design of the developer kit allows users to place the Jetson into any 
compact environment while still producing maximum efficiency and performance rates. 
 

 
Figure 1. This image showcases the physical design of the Jetson TX1 Developer Kit. 

The Jetson TX1 itself is located underneath the fan module on the board. 
 

These efficiency ratings are capable of even surpassing top notch CPUs such as Intel’s core i7-
6700K shown in the image below. This means that for machine learning the Jetson TX1 can 
compete with even the best CPUs and GPUs on the market, while still being a cost effective unit. 

Figure 2. This graph shows the efficiency rating differences from the Jetson TX1 to 
the Intel core i7-6700K in terms of Images/sec/Watt. The Jetson TX1 and core i7 are both 

tested via Alexnet. 
 
The point of utilizing the Jetson’s strengths is due to the overwhelming advantage it has 

over other units in efficiency. Given the Jetson’s specs, the biggest factor aside from its 
performance and efficiency is the multi-purpose applications it has in any scenario. Since the 
TX1 is such a small form-factor, we are able to use it in anything from cars, drones, robots, or 
even small hand-held devices. This puts the Jetson over all the other CPUs in the market since 
they require more variables to reach a similar efficiency rating. Our goal is to have a compact 



supercomputer capable of processing multiple machine learning tasks in the most energy 
efficient way possible. The Jetson is perfect for this role because we are able to take its strengths 
and make the most of our given project. 
 As stated previously, the Jetson uses the NVIDIA’s 256-core Tegra X1 processor. The 
Tegra X1 comes with a dual CPU + GPU combination, which allows the module to be efficient 
while taking up little to no space. The CPU that is built into the Tegra is the ARM Cortex-A57 
meanwhile the GPU is constructed with a full-fledged Maxwell architecture GPU. The two work 
in combination allowing the Jetson to fully tackle heavy machine learning without using 
excessive energy consumption. This gives the Jetson a huge lead over other builds as many other 
computers have either weaker integrated GPUs in their CPUs, or have to use discrete GPUs to 
provide similar performance. This can prevent computers from reaching maximum efficiency at 
very low power levels. Inference differences from small to larger GPUs allows us to both see 
how fast and efficient each processor can be at optimal cases while simultaneously observing 
their utilization and efficiency in non-optimal cases. The table below compares the Tegra X1 to 
the Core i7 6700K, giving us the performance, power, and energy efficiency. The Tegra X1’s 
performance to efficiency ratio is significantly higher than the CPU-based inference while also 
reaching similar absolute performance levels in FP16. This gives the TX1 a huge lead over CPU-
based machine learning devices as it can hit the similar maximum performances as top notched 
processors, but at a quarter of the power consumed.  

 

 
Figure 3. This table shows the statistics between the Tegra X1 and Core i7-6700K on 

AlexNet. The information provided shows difference in inference performance to power 
used between FP32 and FP16. 

 
Deep Learning 

 
To train the Jetson TX1, we’ll be using a method of deep learning. Deep learning is a 

branch of machine learning and machine learning is a branch of A.I. Deep learning refers to deep 
artificial neural networks. The word “deep” refers to the number of layers in a neural network. 
As you increase the number of layers, neural networks have the capacity to become more 
intelligent. These layers are used to extract features from an object for image processing. With 
more layers, computational training becomes more intensive which reinforces our choice of the 
Jetson TX1.  



Multilayer Perceptron 

 
Figure 4. This diagram shows the basic structure of a multi-layer perceptron. Within the 

hidden layers lies the activation function. The activation function uses algorithms to 
perform linear and non-linear classifications. 

 
To understand the architecture of a neural network, we need to understand the multilayer 

perceptron. The multilayer perceptron or MLP is the simplest form of a neural network. 
Multilayer perceptrons are feedforward networks. You can think of this as a guess and check 
method. To move forward, the network uses a forward pass function that allows data to move 
from the input layer, through the hidden layers, and finally to the output layer. The network can 
also move backwards. To move backwards, the network uses a backward pass function which 
uses partial derivatives to create gradients. These gradients are then used to optimize the network 
to achieve convergence. Convergence is where error can no longer increase and becomes 
stagnant.  

Data begins with the input layer and are contained in cells. As these cells move forward, 
weights and bias can be applied to the cell to adjust for a more desired output. The cell will then 
move forward into the hidden layers. In the hidden layers, activation functions are used to 
compete non-linear classifications to find patterns. The MLP also has the ability to compute 
linear data. Linear data models correlation, meaning the prediction of how likely or unlikely 
events are to happen based on previous occurrences. Non-linear data models after inference, as in 
utilizing information about indirect relationships and previous occurrences. A non-linear 
classification allows the network to readjust itself when data becomes too complex or 
classification boundaries become complicated and erroneous. For a MLP, training consists of 
adjusting parameters to minimize error. 
 
 
 



Convolutional Neural Network 
 

A neural network is a set of algorithms modeled after the human brain designed to 
recognize patterns. A convolutional neural network or CNN is a deep learning algorithm that 
specializes in image recognition. CNNs have two unique abilities: the ability to assign 
significance to various aspects of an object within an image and the ability to differentiate an 
object from one another within the same image. 

For our purposes we’ll mostly focus on the convolution and pooling layers. The 
convolutional layer contains a set of learnable filters. These filters are made up of small matrices 
but are able to extend to the full size of an input image. There are three hyperparameters for the 
convolutional layer: depth, stride, and zero padding. Depth refers to the presence of edges and 
color. Stride refers to the number of pixels each filter will move to convolve an image. Zero 
padding allows for a desired output for the size of an image. After the convolutional layer is the 
pooling layer. The pooling layer functions to reduce the spatial size and number of parameters 
the network will need to perform computations. The pooling layer also uses a mac function to 
determine the region of the image that most likely contains the distinct feature. As the image 
becomes smaller, the network has an easier time learning distinct features. 

 
Caffe and DIGITS  

Caffe is an open framework for deep learning. It was developed by UC Berkeley AI 
Research PhD student Yangqing Jia. Caffe architecture is made up of a hierarchy of different 
components. Net, Layers, and Blobs and these are the anatomy of a Caffe model. Forwards and 
Backwards, Forward pass computes an output for a given input, and Backwards pass computes the 
loss gradient relative to learning. Loss function, error or objective function maps out the parameter 
settings dependent on loss. Solver optimizes the model based on Forward and Backwards in an 
attempt to improve Loss. Interfaces are the programming languages such as Python, C++, and 
MatLab that Caffe is ran on. Parameters are calculated by Solver gradients. Deep Learning GPU 
Training System, DIGITS, is the user friendly wrapper for NVCaffe and TensorFlow that is used 
for training DNN.  

DIGITS, unlike Caffe is not a framework but an interface that makes training DNN like 
AlexNet, GoogleNet, LeNet possible. Within DIGITS the user has the ability to code a custom 
Neural Network using Python2. DIGITS requires the host computer to have Python2, CUDA, 
CuDNN, Caffe, and Graphiviz installed in order to work as intended. The DIGITS interface also 
allows for the creation of Datasets which are an essential part of the model training process. 
Datasets are typically thousands of images that are used for Model training. Without the DIGITS 
GUI user friendly interface sorting through thousands of images takes hours as the individual 
would have to manually place each image into correct class folders and randomize images to 
prevent overfitting.  



Methodology  

 
Figure 5. This diagram showcases the steps used to create, test, train, and modify our 

neural network.  
 

The work flow for collecting data and testing consists of six steps: environment setup, 
data collection, custom neural network construction, model training, field testing, and data 
expansion. In environment setup, selected a location based on the limitations of our environment 
that would generate a modest dataset. For data collection, videos were recorded through the 
webcam attached to the Jetson. In custom neural network construction, a multilayer perceptron 
will created as our foundation to advance towards building a convolutional neural network. In 
model training, videos recorded were turned into images to be processed and turned into usable 
models in DIGITS. For field testing, a trained model is created and uploaded onto the Jetson for 
real-time inference testing. Finally in data expansion, the cycle would repeat with additional data 
added depending on the performance and accuracy of the real-time inference. 

 
Environment Setup 
 
For the environment setup, selection of an environment was based on reasonable 

conditions such as brightness, contrast, and vacancy. Due to the given location of our lab, the 
only suitable environment was the school building hallways. The hallways had ceiling lights 
every 14 feet from one another. In between each ceiling light, 7 feet apart, are areas with less 
lighting. This variable needs to be taken into consideration when collecting and processing data. 
Likewise, this leads to contrast. The lighting of the hallways made it ideal for dark objects but 
not bright objects. Lastly, is vacancy. The hallways were relatively vacant of objects and made it 
easier for the Jetson to learn the construct of empty space. 

 



 
Figure 6. On the left side of the image is a diagram of the environment setup for the 
Jetson TX1. In the center of the image is a diagram of the Jetson TX1’s field of view. 
On the right side of the image is a real-life depiction and point of view of the Jetson 

TX1. 
 

Data Collection 
 

Before data collection, we needed to determine classes to categorize our objects. The first 
class is an empty class. This class holds different variations of our hallway without any objects. 
The next class is humans, this class holds different variations of humans standing in particular 
positions in the hallway. However, we eventually changed from object-oriented classes to 
distance-oriented classes. With the prearranged Jetson TX1, this system lacked the functionality 
of sensors to detect objects in close proximity. To compensate for the lack of sensors, we 
replaced our human class with a 5 feet and 10 feet class to emulate distance.  

For data collection, we recorded video using computer vision through a usb Logitech 
webcam with the following capabilities: 720p resolution, 30 frames per second, and 60 degree 
field of view with vertical adjustability. Videos recorded were converted into 320 x 240 
resolution images. Looking at Image 6, the rear positioning of the camera was chosen to capture 
equals amounts of the floor, hallway, and ceiling. Due to the rear positioning of the camera, the 
Jetson has a blindspot of 5 feet. The 5 feet class begins where the boundary of the blindspot ends. 
Additionally, a 10 feet class was chosen as both a precautionary measure and test for the 
performance of incoming objects at a distance.  
 

Table 1. This table shows examples of the three following classes for our dataset 



   

Empty 5ft 10ft 

 
 

 
Figure 7. This diagram depicts the qualities of two different viewpoint positions, the 

(1) front and (2) rear.  
 
Looking at our collection of data, there are six variables that need to be taken into 

consideration: viewpoint, truncation, illumination, clutter, clarity, and size. Looking at Image #, 
we have a diagram showcasing two viewpoints. Analyzing both images, we notice that the 
viewpoint affects the six variables. In the front viewpoint, the 5 feet blindspot was removed and 
focus is shifted more towards the floor. Also, the top half torso has been truncated and obstructs 
the light source. With less illumination, the clarity of the object decreases and impedes the 
distinct features that make up the shape of a human. Switching to the rear viewpoint, 



illumination and clarity increases while truncation and size decrease, and clutter remains neutral 
in both viewpoints. It is clear that with a rear viewpoint, the features of an object become more 
pronounced and recognizable. By comparing the two viewpoints, the rear position become the 
standard for our data collection. From start to finish, we’ve generated five versions of our dataset 
with each subsequent iteration the number of images increases. As the number of images 
increases, our neural network has more to learn from.  
 

 Table 2. This table shows the number of images in the database of each 
iteration  

Version Number of Images 

1 4,091 

2 11,687 

3 34,529 

4 51,221 

5 60,662 

  
Custom Neural Network Construction 

SimpleNet (Multilayer Perceptron) 

 
Before constructing the custom neural network, we created a simple multilayer 

perceptron named SimpleNet to use as our foundation. First, we researched the caffe architecture 
of a neural network using an online resource created by Yangqing Jia and developed by Evan 
Shelhamer at University of California, Berkely. Then, we used the standard neural network, 
LeNet, as a reference model to create each layer of the multilayer perceptron.  
 Starting with the data layer, we used a batch size of 1024 for training data and 128 for 
validation data. Due to the size of our dataset, we determined that a batch size of 1024 and 128 
was optimal for training a small network. Moving on, we have our first fully connected layer 
with 100 neurons. Within the hidden layers, we have the Sigmoid Activation function. The 
Sigmoid was an atribary activation function to test the functionality of the neural network. A 
second fully connected layer is added to support the capacity of computations that the neural 
network will need to perform. Here only 3 neurons are utilized. It then splits to the softMax layer 
to determine the expected loses in the training data, loss layer to measure inconsistencies 
between predicted values, and accuracy layer to measure how accurate the network is based on 
inference. 



 
Figure 8. Diagram of SimpleNet (multilayer perceptron) using a Caffe architecture 

generated by Nvidia DIGITS 

KeviNet (Custom Convolutional Neural Network) 
 
 The custom convolutional neural network named KeviNet is comprised of SimpleNet 
with a convolutional layer and pooling layer. Compared to the data input of SimpleNet, we 
adjusted the batch size of KeviNet to 64 and 32. A smaller batch size was chosen to control the 
accuracy of the error gradient, speed, and learning process of the neural network. For the 
convolutional layer, it had a kernel size of 10, stride size of 1, and zero padding of 0. Since input 
images were 320x240, a kernel size of 10 with a stride of 1 was deemed sufficient through 
testing. For the pooling layer, we decided to decrease the kernel size but increase the stride to be 
twice as fast. Additionally, ReLU was used instead of Sigmoid due to better optimization. All 
other components were equivalent to the multilayer perceptron. 



 

 
Figure 9. Diagram of KeviNet (custom convolutional neural network) using a Caffe 

architecture generated by Nvidia DIGITS 
 
Field Testing 
 

For field testing, we tested the accuracy and reliability of our dataset with real-time 
inference. We used four test subjects. Two subjects were controlled and part of the training data. 
The other two subjects were uncontrolled and wore clothing with colors that the neural network 
was unfamiliar with. The average height of the trained data was about 5’ 5’’ with mostly black, 
blue, grey, and white colored clothing 
 

AlexNet Table 3. This table displays the real-time inference distance for the 5 feet 
class 

Height  Clothing Trial 1 Trial 2 Trial 3 Average 

5’ 10’’ 
Controlled 

White shirt 
Blue Jeans 

4’ 5’’ 5’ 8’’ 6’ 2’’ 5’ 5’’ 



5’ 8’’ 
Controlled 

Grey Shirt 
Black Jeans 

4’ 8’’ 4’ 6’’ 4’ 8’’ 4’ 7.3’’ 

5’ 6’’ 
Uncontrolled 

Black shirt 
Green shorts 

4’ 4’’ 4’ 0’’ 4’ 5’’ 4’ 3’’ 

5’ 9’’ 
Uncontrolled 

Blue Shirt 
Khaki Jeans 

4’ 6’’ 4’ 8’’ 4’ 5’’ 4’ 6.3’’ 

 

Simple
Net 

Table 4. This table displays the real-time inference distance for the 5 feet 
class 

Height  Clothing Trial 1 Trial 2 Trial 3 Average 

5’ 10’’ 
Controlled 

White shirt 
Blue Jeans 

4’ 9’’ 4’ 9’’ 4’ 9’’ 4’ 9’’ 

5’ 8’’ 
Controlled 

Grey Shirt 
Black Jeans 

4’ 8’’ 4’ 9’’ 4’ 7’’ 4’ 8’’ 

5’ 6’’ 
Uncontrolled 

Black shirt 
Green shorts 

3’ 9’’ 4’ 9’’ 3’ 3’’ 3’ 11’’ 

5’ 9’’ 
Uncontrolled 

Blue Shirt 
Khaki Jeans 

5’ 4’’ 5’ 9’’ 5’ 1’’ 5’ 4.7’’ 

 

KeviNet Table 5. This table displays the real-time inference distance for the 5 feet 
class 

Height  Clothing Trial 1 Trial 2 Trial 3 Average 

5’ 10’’ 
Controlled 

White shirt 
Blue Jeans 

4’ 3’’ 4’ 9’’ 4’ 11 4’ 7.7’’ 

5’ 8’’ 
Controlled 

Grey Shirt 
Black Jeans 

4’ 5’’ 4’ 4’’ 4’ 6’’ 4’ 5’’ 

5’ 6’’ 
Uncontrolled 

Black shirt 
Green shorts 

3’ 0’’ 3’ 2’’ 3’ 7’’ 3’ 3’’ 

5’ 9’’ 
Uncontrolled 

Blue Shirt 
Khaki Jeans 

3’ 8’’ 4’ 11’’ 7’ 10’’ 5’ 5.7’’ 

 
 



AlexNet Table 6. This table displays the real-time inference distance for the 10 
feet class 

Height  Clothing Trial 1 Trial 2 Trial 3 Average 

5’ 10’’ 
Controlled 

White shirt 
Blue Jeans 

13’ 4’’ 13’ 5’’ 11’ 11’’ 12’ 10.7’’ 

5’ 8’’ 
Controlled 

Grey Shirt 
Black Jeans 

8’ 10’’ 8’ 11’’ 8’ 5’’ 8’ 8.7’’ 

5’ 6’’ 
Uncontrolled 

Black shirt 
Green shorts 

9’ 1’’ 12’ 7’’ 10’ 9’’ 10’ 9.7’’ 

5’ 9’’ 
Uncontrolled 

Blue Shirt 
Khaki Jeans 

9’ 3’’ 11’ 5’’ 12’ 1’’ 10’ 11’’ 

 

Simple
Net 

Table 7. This table displays the real-time inference distance for the 10 
feet class 

Height  Clothing Trial 1 Trial 2 Trial 3 Average 

5’ 10’’ 
Controlled 

White shirt 
Blue Jeans 

9’ 5’’ 9’ 2’’ 9’ 10’’ 9’ 5.7’’ 

5’ 8’’ 
Controlled 

Grey Shirt 
Black Jeans 

9’ 5’’ 10’ 0’’ 9’ 7’’ 9’ 8’’ 

5’ 6’’ 
Uncontrolled 

Black shirt 
Green shorts 

8’ 7’’ 9’ 11’ 8’ 6’’ 9’ 0’’ 

5’ 9’’ 
Uncontrolled 

Blue Shirt 
Khaki Jeans 

8’ 9’’ 9’ 0’’ 9’ 2’’ 8’ 11.7’’ 

 

KeviNet Table 8. This table displays the real-time inference distance for the 10 
feet class 

Height  Clothing Trial 1 Trial 2 Trial 3 Average 

5’ 10’’ 
Controlled 

White shirt 
Blue Jeans 

14’ 3’’ 13’ 0’’ 14’ 0’’ 13’ 9’’ 

5’ 8’’ 
Controlled 

Grey Shirt 
Black Jeans 

12’ 2’’ 12’ 1’’ 12’ 5’’ 12’ 3’’ 



5’ 6’’ 
Uncontrolled 

Black shirt 
Green shorts 

13’ 9’’ 13’ 7’’ 15’ 3’’ 14’ 2.3’’ 

5’ 9’’ 
Uncontrolled 

Blue Shirt 
Khaki Jeans 

12’ 5’’ 13’ 3’’ 14’ 1’’ 13’ 3’’ 

 
Analysis and Results 
 
Importance/Analysis of Datasets 
 

Although there are pre-built data sets we can obtain from the internet, we wanted to 
create our own dataset to have a better understanding of the different factors and procedures 
required for creating a reliable dataset. This allowed us to understand any types of errors we may 
have encountered during the process of creating the dataset. By creating our own dataset we gain 
the ability to customize the data set or create one that will fit best for a specific task.  

One factor that was detrimental to the performance of the neural network was the angle 
of the camera. Any amount of adjustment to the angle would significantly decrease the accuracy 
to the point of complete failure. To combat this, a fixture was built to keep the angle locked 
through data collection and field testing. Another factor was the subject’s body proportions. The 
larger the test subject, accuracy increased. The skinner the test subject, accuracy decreased. We 
fixed this issue by adding more variation of body types and heights into the dataset. The last 
factor was the environment. If the Jetson TX1 were to be deployed anywhere other than the 
environment it collected data from, exposure to new objects would be completely inaccurate. 
This is mainly due to the type of classification we used in our neural network. For our 
convolutional neural network, it was trained for image classification and not object classification. 
Due to time constraints, we decided to use image classification over object classification. Ideally, 
object classification would be able to accurately detect objects without environment restrictions. 

 
Standard vs Custom 

 
The three Neural Networks, AlexNet, KeviNet and SimpleNet, were trained and tested on 

inference DIGITS. AlexNet was the standard Convolutional Neural Network, SimpleNet was the 
MultiLayer perceptron and KeviNet was the custom Neural Network. When training the Neural 
Networks we used the same Dataset V5 which contained 90% training images, 10% validation 
images and 1% test images. When looking at theoretical performance SimpleNet, MLP, gave us 
the highest accuracy of about 98%. This theoretically means that when classifying the 3 different 
classes either empty hallway, person at 5 feet, and person at 10 feet it would have the highest 
confidence. AlexNet had the lowest accuracy of about 94% making it theoretically the least 
accurate at classifying the 3 different classes. KeviNet gave an accuracy of about 96%.  

When field testing for accuracy SimpleNet was the least accurate. On average when 
classifying humans at 5 feet SimpleNet stopped at 4.212 feet which gave a STD of 1.552 feet. 
The average for 10 feet was 13.228 feet and the STD was 1.063 feet . It’s poor accuracy was due 
to it having the least parameters out of all 3 Neural Networks. AlexNet gave the best field testing 
results making it the most accurate.  On average when classifying humans at 5 feet AlexNet 
stopped at 4.212 feet which gave a STD of .728 feet. The average for 10 feet was 10.805 feet and 
the STD was 2.053. In the middle ground was KeviNet which was our custom CNN. Its 



performed fair as it didn’t have as many parameters and layers as AlexNet but wasn't as simple 
as the MLP; SimpleNet.  On average when classifying humans at 5 feet KeviNet stopped at 
4.657 feet which gave a STD of .753 feet. The average for 10 feet was 9.398 feet and the STD 
was .555.  

Overall when considering field testing, theoretical performance, and actual performance, 
our custom Neural Network, KeviNet, performed best at classifying humans at 5 feet and 10 feet. 
When field testing from beginning to end KeviNet took about 25 seconds to complete 1 cycle 
this was because it had a moderate overhead. Which was faster than AlexNet which would often 
stutter due to it’s large overhead that created bottlenecking  in the Jetson TX1 causing it to take 
about 35 seconds to complete 1 cycle. SimpleNet was the quickest due to its small overhead 
giving it a real time inference time of 21 seconds to complete one cycle. SimpleNet would often 
have a hard time detecting humans at 5 feet.   
 

 
Figure 10: The top graphs indicate the accuracy of each Neural Networks at different Epochs. 

The bottom graphs indicate the learning rate decay of each Neural Network with respect to 
Epoch iteration. 

 



 
Figure 11: This was the environment set up for the Custom Neural Network vs Standard Neural 
Network. At one end sat the autonomous Jetson TX1 and at the other end a human subject stood.  

 

 
Table 9: This data was measured in feet. It contains the average real time inference for 5 feet 

and 10 feet from 2 know subjects to our dataset and 2 unknown subjects..  
 
Conclusion 
 
In order to make this project possible 5 goals were created. Goal 1: Build and train custom 
dataset, Goal 2: Deploy and optimize a standard neural network on the Jetson TX1, Goal 3: 
Deploy and optimize parameters autonomous field testing, Goal 4: Enlarge custom dataset with 



more environmental variation, and Goal 5: Create and compare custom Neural Networks with a 
standard Neural Network for autonomous driving. We were able to reach 5 out 5 of our goals. 
 
Future work  

As of now the Nvidia Jetson TX1 only has one camera. This that the computer only sees 
in the 2 Dimension making it hard for the autonomous TX1 robot to analyze depth when looking 
for people at 10 feet and 5 feet. There are a few techniques to overcome this one of them is by 
adding a second camera to the autonomous robot. This second camera can be used as a reference 
point and by using 3D software could triangulate the object. The second technique that can be 
applied to tell depth in a 2D picture can be by using a camera with lenses. This single camera can 
then take a picture from the same position at two different depths. The last but not final 
technique that could be to implement would be adding infrared distance sensor. This could work 
in conjunction with the camera in order to validate information being feed. 

Further work needs to be done to the custom Neural Network in order to make it more 
robust. By adding and taking layers away we could make it more efficient at object detection. 
Increasing datasets to include different environments would add in variation. Our datasets were 
collected at different points of a hallway at SFSU and this was due to the Jetson TX1 needing to 
have internet connection in order to operate. By making the Jetson Tx1 able to operate without 
internet connection we could then expose the autonomous vehicle to different environments 
overall making our entire system more robust.  
 

Literature Review 
 
Using deep learning to investigate the neuroimaging correlates of psychiatric and 
neurological disorders: Methods and applications 
 

In the past two decades, neuroimaging studies of psychiatric and neurological patients 
have relied on mass-univariate analytical techniques. By utilizing Deep Learning, the 
neuroimaging community can develop algorithms that discovers trends and patterns in existing 
data and use the information to make predictions on new data. Deep Learning methods are 
statistical inferences at a single subject level, meaning that it can be used to inform diagnostic 
and prognostic decisions of individual patients, overcoming the limitations of previous 
techniques. DL techniques such as Support Vector Machine works by estimating an optimal 
hyperplane that separates two classes. When they are not linearly separable, SVM uses kernels 
that maps the original data to make them linearly separable. Despite being in its initial stages, the 
application of DL in neuroimaging has shown promising results for fundamental advances in 
searching for imaging-based biomarkers of psychiatric and neurologic disorders. Due to the 
complexity of DL models, many studies must favor sample sizes of larger quantities to train the 
machine to adapt to newer information. 
 
Small Neural Nets Are Beautiful: Enabling Embedded Systems with Small Deep-Neural-
Network Architectures  



When creating a custom Neural Network our main concern was making it with the fewest 
amount of parameters possible while maintaining the highest accuracy. To accomplish this 
computation overhead had to be taken into consideration. The inspiration to make a small but 
precise CNN came from the research paper Small Neural Nets Are Beautiful by Forrest Iandola 
and Kurt Keutzer. At the UC Berkeley Lab they created a Deep Neural Network called 
SqueezeNet. SqueezeNet requires as little as 480KB of storage for its parameters. AlexNet which 
is a popular Convolutional Neural Network uses about 60 million parameters that require 
240MB, and in comparison SqueezeNet holds about 1.2 million and require about 480KB which 
is a 50x size reduction in parameters. SqueezeNet’s smaller overhead means that the Deep 
Neural Network could be trained much faster and would require less computational overhead to 
operate making it more efficient. A small Deep Neural Network is more practical to use when 
working in collaboration with the software Computer Vision and embedded systems that have 
constraints. Embedded systems that have constraints such as lack of computational power could 
potentially lead to bottlenecking in the system. Less parameters means less updates the system 
has to periodically change overall making  it easier on low power computer such as the Nvidia 
Jetson TX1 that we were using to control the autonomous vehicle.  

High performance vegetable classification from images based on AlexNet deep learning 
model 
 With China being one of the largest vegetable producers in the world, there is a high 
demand in the creation of a machine that can pick vegetables autonomously and decrease the 
amount of manual operation and reduce the amount of labor force. The first step into creating 
this robot is by creating one that can identify and classify vegetables individually. With the 
help of the Caffe deep learning framework, and the AlexNet neural network, it is possible to 
create and train data sets of different vegetables that will give the machine an ability of 
identifying vegetables based on the data sets. With AlexNet, there is a higher accuracy than 
that of the BP neural network with BP having 78% accuracy and AlexNet having 92.1%. 
 
GPU-Assisted Learning on an Autonomous Marine Robot for Vision-Based Navigation and 
Image Understanding 
 

A GPU-based integrated robotic system incorporated on a single underwater vehicle 
capable of collision avoidance, navigation, and image understanding. The unit deploys 
observational tasks such as coral reef health assessments using operations of multiple image 
analyzation tasks in close proximity areas. The device also must navigate through these tight fit 
areas utilizing object detection and collision avoidance.  By having GPU integration the device is 
capable of leveraging deep neural networks for each of the automated tasks. The CPU processes 
images in order to perform visual Simultaneous Localization and Mapping (SLAM for short). 
The state-of-the-art marine applications can leverage deep networks for sensor processing, while 
in this work the focus on image processing using Deep Convolution Neural Networks for 
environmental assessments. Having a DCNN for data analysis and measurement solutions can 
have a major advantage in both performance and system efficiency over classical methods. 



However, a huge disadvantage of using machine learning as the primary sensing modality is 
carrying out computer vision underwater, and the computational costs that come with it. 

Deep Learning 
Deep Learning is a form of machine learning that can identify objects and classify 

images. It is used in most aspects of modern society and has been a big factor in the world of 
Artificial Intelligence. With the help of the machine learning form called Supervised Learning, 
we are able to detect objects such as cars, houses, cats, dogs, or a person. It is a form of 
machine learning that consists of datasets with images of the object we wish to be detected. 
With the help of convolutional neural networks, we are able to process the data which can be 
trained and tested for evaluation. Deep learning has a bright future ahead of it with the 
amounts of data being collected and shared which will improve artificial intelligence. 
 
Yann Lecun, Yoshua Bengio, Geoffrey Hinton, “Deep Learning” 
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