

- The end goal of our project is to create a trained and tested model that can be deployed on the Jetson to mimic autonomous self-driving vehicles
- **1. Introduction**

Statement	Build a deployable autonomous robot designed for the Jetson TX1 to enable live image classification.	
Goal 1	Build and train custom dataset	
Goal 2	Deploy and optimize a standard neural network on the Jetson TX1	
•		
Goal 3	Deploy and optimize parameters autonomous field testing	
Goal 4	Enlarge custom dataset with more environmental variation	
+		
Goal 5	Create and compare custom neural networks with a standard neural network for autonomous driving	

- To teach the Jetson image classification, we'll use deep learning
- Deep learning refers to deep artificial neural networks
- Deep learning is a branch of machine learning and machine learning is a branch of AI
- The word "deep" refers to the number of layers, as you increase the number of layers, neural networks have the capacity to become more intelligent
- With more layers computational training becomes more intensive

2. Platform: Jetson TX1

- Jetson TX1 is a fast, power-efficient embedded Al computing device
- Jetson uses GPU and CPU for parallel computations
- Jetson TX1 allows for edge computing in a small form factor

Optimizing a Convolutional Neural Network for Autonomous Jetson Image Classification

Michael Gee¹, Eddy Rodriguez¹, Jeffery Mattos¹, Jose Reyna Pardo¹ Graduate Mentor: Kevin Yamada², Advisor: Hao Jiang² ¹Cañada College 4200 Farm Hill Blvd. Redwood City, CA 94061 ²San Francisco State University: Dept. of Engineering 1600 Holloway Ave. San Francisco, CA 94132

Training

- Setup located in Hallway
- Road spans 20 ft in length and 3 ft wide
- With a rear viewpoint, there's a 4ft blind spot
- Webcam films at 320 x 240 resolution with 30 FPS

6. Data Collection

Empt

- Data Iterations:
- V1 = 4,091
- V2 = 11,687
- V3 = 34,529
- V4 = 51,221
- V5 = 60,662 • Classes:
- Empty
- 5ft
- 10ft

7. Custom Neural Network

SimpleNet = MLP + CNN

- Convolutional Layer
- Pooling Layer
- Fully Connected Layer = 2
- Activation Function: ReLU
- Softmax
- Loss
- Accuracy

- Sim

AlexNe

- Robus Large
- Conta Activa
- ReLU
- 256 x
- Infere Most

Research 1.

9. Field Training Results

• Testing was performed on 4 test subjects for 5 trials

2 controlled subjects, part of the trained data • 2 uncontrolled subjects, not part of trained data

ural twork	5ft averages	10ft averages	5ft STD	10ft STD
xNet	<mark>4.694</mark>	<mark>10.805</mark>	<mark>0.728</mark>	<mark>2.053</mark>
viNet	<mark>4.657</mark>	<mark>9.398</mark>	<mark>0.753</mark>	<mark>0.555</mark>
npleNet	<mark>4.212</mark>	<mark>13.388</mark>	<mark>1.552</mark>	<mark>1.063</mark>

10. Conclusion

t i i i i i i i i i i i i i i i i i i i	KeviNet	SimpleNet
st CNN overhead ains 8 layers	 Lightweight CNN Moderate overhead Contains 2 layers Activation Eurotion – 	 Multi-layer Perceptron Small overhead Contains 1 layer Activation Eurotion –
256 image input ence Speed = ~35s Accurate	 Activation Function – ReLU 320 x 240 image input Inference Speed = ~21s Fairly Accurate 	 Activation Function – Sigmoid 320 x 240 image input Inference Speed = ~19s Least Accurate

11. References

[1] Iandola, F., & Keutzer, K. (2017). Small neural nets are beautiful. Proceedings of the Twelfth IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System *Synthesis Companion - CODES 17.* doi: 10.1145/3125502.3125606 [2] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. Dropout: A Simple Way to Prevent Neural Networks fromOverfitting. Journal of Machine Learning [3] Jia. Y, Shelhamer. E, Caffe

12. Acknowledgements

Thank you to Dr. Hao Jiang and Kevin Yamada for mentoring us in this project with supportive guidance. Finally, we are truly grateful for this opportunity brought to us and led by Nick Langhoff through the US Department of Education Minority Science and Engineering Improvement Program (MSEIP), "Accelerated STEM Pathways through Internships, Research, Engagement, and Support" (ASPIRES), Grant No. P120A150014.